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Correlated ion stopping in plasmas
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~Received 13 January 1997; revised manuscript received 6 March 1997!

The basic features of correlated ion stopping in plasmas are demonstrated by employing two opposite
extremes of cluster structures, a statistical model with a spatial ion distribution of Gaussian shape and the
highly regular configuration ofN-ion chains and cubic boxes. In the case of the ion chains the resonant
character of correlated stopping due to the interference of the excited wake fields is discussed in detail. The
general behavior of correlation effects is summarized and its dependence on the ratio of cluster size and
interion spacing to the screening length in the plasma, as well as the ratio of the cluster velocity to the mean
electron velocity in the target, is stressed out. The validity and applicability of the dielectric response formal-
ism used for describing correlated stopping is critically reviewed. A scheme is presented to extend the linear
formalism to weak nonlinear situations that occur, in particular, for small highly charged clusters at moderate
or low velocities. For the Gaussian cluster a fit formula is given, which allows a fast and accurate calculation
of the enhancement of stopping due to correlation effects and applies for all degrees of degeneracy of the
electrons and arbitrary cluster velocities.@S1063-651X~97!00907-0#

PACS number~s!: 52.40.Mj, 34.50.Bw
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I. INTRODUCTION

The interaction of fullerenelike, carbonlike, or metall
clusters with solids and hot plasma targets has recently
tracted a lot of attention concerning the investigation of
cluster structures themselves, as well as the use of cluste
beams~CIB! as drivers to compress the target and to prod
high energy densities in matter. In this context CIB are p
posed as a promising driver for heavy ion inertial fusi
~ICF! @1,2#. There the interest is mainly in particles wit
energies of a few keV per nucleon which interact mos
with the target electrons. Because such clusters will fragm
quickly on a femtosecond time scale when hitting the targ
one has to consider an ion debris with some atomic u
relative distances between the ions. Within the dielectric f
malism the correlation effects on the stopping, in such s
ations, were already submitted to a number of investigatio
first on dicluster stopping@3#, later on arbitrarily largeN
clusters@1,4–6#. While in these works the target was a ful
degenerate electron jellium, recent investigations also
dressed the cases of partially degenerate plasmas@7# and
classical electron plasmas@8–10# as well. Also, at variance
with the dielectric linear response description, nonpertur
tive approaches have been used to study dicluster stoppi
low velocities and in fully degenerate electron targ
@11,12#.

To investigate the effects of correlated stopping in a C
driven ICF scenario a wide range of target conditions for
ion or ion-cluster interaction within the absorber or conver
have to be considered. Due to the enormous heating,
starts with a solid~jellium! target in the beginning of the
ion-beam pulse which turns a partially degenerate plas
into a dense, high temperature, and classical plasma
cover the full width of target conditions and phenomena
volved in correlated ion stopping we concentrate in this
per on a general qualitative discussion of correlated ion s
ping and a review on the involved basic features rather t
devoting us to very specific situations as already addresse
561063-651X/97/56~1!/970~18!/$10.00
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the literature. The basic phenomena in correlated ion s
ping are demonstrated in Sec. III by employing three gene
examples of cluster structures, Gaussian clusters,N chains of
ions, and ions on the vertices of cubic boxes. In the Gaus
cluster the ions are distributed around the cluster cente
distances according to a Gaussian-like probability as a st
tical description for the ion debris created by the fragmen
tion process. In contrast to such a statistical model for
cluster structure theN-ion chains and the cubic boxes io
arrangements represent the opposite extreme of a w
defined highly regular ion configuration which may exhib
additional phenomena due to possible interferences in
excited wake fields. As will be outlined, the quality an
quantity of the basic correlation effects are mainly det
mined by the ratio of the typical length scale of or in the i
cluster (lc) compared with the screening length of the targ
plasma (ls) and the ratio of the ion-cluster velocityv to the
mean velocitŷ ve& of the target electrons. The arrangeme
of several ions determines the polarization of the plasma
the creation of the induced electrical field and, thus, the c
relation effects on the stopping power as the force on
ions due to the induced field at their locations. For typic
ion interdistances and a size of the cluster small compare
the screening length in the target plasma (ls), the ions alto-
gether create the target response. Thereby, the induced
is the same as one produced by a single large charge
yields an enhancement of the stopping. In the opposite c
of large distances between the ions, with respect to
screening length, each ion acts, more or less, like an isol
ion on the target, however, the excited wake fields may
terfere constructively or destructively and thereby enhanc
reduce the stopping compared to the case of uncorrel
stopping. The different underlying physics yields differe
features of correlated stopping depending on the target c
ditions, the cluster velocities, and the number of ions in
cluster, as will be illustrated for the examples in Sec. III a
summarized in a more general overview in Sec. IV. In Sec
we briefly review the dielectric linear response formalis
970 © 1997 The American Physical Society
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56 971CORRELATED ION STOPPING IN PLASMAS
which we employ to describe correlated stopping, and c
cally discuss the validity and applicability of this common
used approach. Further, we introduce a scheme to exten
linear response treatment of the stopping of ion clusters
semilinear regime to account for~weak! nonlinear effects
which become important, in particular, for small and high
charged clusters at moderate or low velocities. In addition
fit formula for the enhancement of stopping for the Gauss
cluster is presented in Sec. III which is applicable for
degrees of degeneracy of the target plasma and any cl
velocity. This formula provides, besides a fast evaluation
the enhancement, a good understanding of the physic
correlated stopping. As a basis of future work, it allows
cheap but reliable estimate of the correlation effects on
range and energy deposition of ion debris,including the
Coulomb explosion of the cluster, so far neglected here a
most of the published investigations on correlated stoppi

II. ION-CLUSTER STOPPING IN PLASMAS

The whole slowing down process of an ion cluster, af
fragmentation and initial ionization have taken place, wh
are subjects of great interest by themselves, involves
stopping power on the cluster, the evolution of the cha
states of the ions, and the Coulomb explosion. A descrip
of ion-cluster stopping, hence, requires a simultaneous tr
ment of all these processes including besides correlation
fects on the stopping power the, up to now open, question
correlation effects on the charge states as well. Some
work on this task, ignoring correlation effects on the i
charges, is reported in@13,14# for the energy loss of C60
clusters. Here, we concentrate completely on the stopp
power for a given cluster configuration, i.e., for given po
tions, velocities, and charge states of the ions, as it m
occur at a certain time within the slowing down.

To investigate the basic aspects of correlated stopping
employ the dielectric linear response formalism@15,16#.
There the stopping is determined from the electrical fi
induced in the target plasma by the charge distribution of
clusterr(r ,t) and the corresponding dynamical response
a momentum transferk and an energy transferv is provided
in terms of the dielectric function«(k,v). We only consider
electronic stopping by an ideal free electron target with d
sity n and temperatureT, where the kinetic energy of th
electrons always exceeds their potential energy and the
ality parameterj is smaller than unity, that is,

j5
^Ep&

^Ek&
5

e2

4pe0a~EF1kBT!
5
2a2r s
11Q

,1, ~1!

where r s5a/a0 with a5(4pn/3)21/3 and a0 the Bohr ra-
dius, Q5(kBT)/EF denotes the degree of degeneracy,EF
the Fermi energy, anda5(4/9p)1/350.521 . . .. Forclassical
plasmasQ@1, the parameterj turns into the classica
plasma parameterG5e2/4pe0kBTa 52a2r s /Q. Rewriting
the conditionj,1 as an inequality for the temperature, w
have

kBT

13.6 eV
.
2a2r s21

a2r s
2 , ~2!
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and an ideal target for electron densitiesn.2.63
1023 cm23(r s,1/2a2'1.84) or temperaturesT.3.7 eV.
Hence, except for the very early time of heating an IC
target by an~cluster-! ion beam, we deal with an ideal elec
tron target. Within the boundaries given by the conditi
j,1, we, however, allow in our considerations for any d
gree of degeneracyQ, to include classical plasmas as well
the electron jellium in solids. For these ideal plasmas we
use the dielectric function«(k,v) determined in the well-
known random phase approximation~RPA! for free electron
targets at any degeneracy~e.g.,@17#!.

A. Dielectric linear response formalism

Within the dielectric formalism, the external charge de
sity

r~r ,t !5E d3r 8r~r 8!d3„r 82~r2vt !…

5(
i
Zied3„r i2~r2vt !… ~3!

of an ion-cluster projectile ofN pointlike ions with charges
$Zie% located at$r i%, which all move through the target with
the same projectile velocityv ~‘‘frozen configuration’’ of
relative positions!, results in the general expression for th
stopping powerS52dE/ds @7,18#, where dE/ds is the
change of the projectile energy per unit path length,

S5
1

e0~2p!3
E d3k

k• v̂

k2
ImF 21

«~k,k•v!G r̃ ~2k! r̃ ~k!. ~4!

Here, r̃ (k) is the Fourier-transformed charge densityr(r )
and

r̃ q~2k! r̃ q~k!5e2F(
n

Zn
21(

n
(
m5” n

ZnZm

3exp@ ik•~rn2rm!#G . ~5!

The use of pointlike ions in Eqs.~3!–~5! serves to restrict the
forthcoming discussion to the basic phenomena and re
sents real ions of extensiond, if d is small compared to the
wavelengths of the electrons,| r5\/m^v r&@d, where^v r&
is the relative velocitŷ v r&5^uve2vu&, averaged over the
electron distributionf (ve). When the extension of the ion
becomes important, non-point-like charge distributions
each ion qi(r ), with *d3r qi(r )5Zie and r(r )
5( iqi(r i2r ), can be introduced in the above description
replacing Eq. ~3! through r(r ,t)5( iqi„r i2(r2vt)… and
r̃ (2k) r̃ (k)5(n(mexp@ik•(rn2rm)#qn(2k)qm(k) ~see
@7#!.

For purposes of practical interest, as the determination
correlation effects on the heating of a target which is irra
ated by a CIB, one wants to know the averaged stopping
an ion cluster rather than the stopping of individual cluste
which may differ in the detailed structure, the size, the o
entation, the charge states of the ions, and so on. Hence
useful to study the average of Eq.~4! over an ensemble o
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972 56GÜNTER ZWICKNAGEL AND CLAUDE DEUTSCH
ion clusters with varying configurations$Z i%, $r i%. To sim-
plify this further, we assume equal charges of the io
Zi5Z, leading to the ensemble-averaged stopping per
ticle @4,5#

^S&/N5
Z2e2

e0~2p!3
E d3k

k• v̂

k2
ImF 21

«~k,k•v!GS~k!, ~6!

where S(k)5^ r̃ (2k) r̃ (k)&/NZ2e2 is the static structure
factor of the ensemble of ion clusters. Introducing the pa
distribution functiong(r i2r j ) of the ion clusters one gets

S~k!511E d3r g~r !exp~2 ik•r !, ~7!

with the normalization condition S(k50)51
1*d3r g(r )5N. It should be emphasized that the averag
procedure above yields an average on the stopping powe
an ensemble of clusters, and is not the stopping of an
tended charge densitŷr(r )& resulting from an average o
the cluster densities~3!. The stopping of an extended charg
distribution^r(r )& tends to zero in the limit of large cluster
that is, for a growing extension of the charge distributi
@^r(r )&→0#, while Eq.~6!, in this case, approaches the sto
ping of isolated, individual ions@g(r )→0,S(k)→1#.

B. Applicability of the linear response treatment

Before proceeding further, we look briefly on the pr
requisites to apply the widely used general approach~4! for
the description of correlated stopping.

First of all, the employment of the linear response is o
justified as long as the ion cluster represents a weak pe
bation on the target plasma. For ion clusters of probably h
total charges and rather moderate energies around
keV/u, nonlinear effects are a more serious problem than
very fast single ions. We shall discuss the validity of a line
response for ion clusters and in particular, the treatmen
correlated stopping in a semilinear regime in Sec. II C.

The stopping power expression~4! implies that the in-
duced electrical field in the comoving cluster frame is s
tionary on a time scalevp

21 , the inverse of the plasma fre
quency, and the response time of the electron target.
consider the stopping power~4! as a snapshot in the whol
slowing down process allows only for changes in the clus
configuration and velocity, which are slow on this time sca
Besides slow changesv̇}S in the velocityv due to the stop-
ping powerS and changesŻ in the charge states due t
ionization and recombination, this further requires a su
ciently small spreadvi2v in the velocities of the ions aroun
the cluster mean velocity to avoid fast changes in the rela
positions. While the first two processes undergo only sl
variations in time for most cases of interest, it is not obvio
that the velocity spread remains always small enough.
main sources for the velocity spread are the Coulomb ex
sion due to the repulsion of the ions, the straggling in
stopping power, various stopping powers caused by diffe
ion charges of the cluster members, and also collisions w
target ions.

The contribution to the velocity spread by the Coulom
explosion can be roughly estimated from the initial Coulom
s
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energy of the ion cluster~when fragmentation and ionizatio
have already taken place!. For an ion cluster withN ions of
~averaged! chargeZe and massM , and an initial sizer 0, the
kinetic energyEc ~per u! gained by the ions during the re
pulsion is around

Ec&0.0272
Z2N

M /uS a0r 0 D keV, ~8!

whereu is the atomic mass unit anda0 is the Bohr radius.
For most heavy ion clusters of interest, the energyEc is
much lower than the initial energy of the ionsEo ~typically
10–1000 keV peru! and the corresponding spread of veloc
ties is small compared to the actual cluster mean velocitv
during the largest part of the slowing down.

The straggling strongly depends on the projectile veloc
and target parameters as well as on correlations effe
mostly in a very similar manner as the stopping power@19#
and no general statements on the importance of stragglin
the velocity spread are available at present. In particular,
not evident, that straggling is negligible in this context.

From different charge states of the ions, distribut
around some mean value^Z&, large changes in the individua
velocities may be expected due to the strong dependenc
the charge (v̇ i}Zi

2), in particular, for weakly charged pro
jectiles where already small variations in the charge sta
yield large changes in stopping relative to the stopping
average.

While the contribution of nuclear stopping by the targ
ions is always negligible compared to the electronic stopp
for the considered projectile velocities which are mu
higher than the thermal velocities of the target ions, th
collisions with the projectile ions can, however, contribu
significantly to the velocity spread of the cluster ions. T
estimate the importance of this effect one has to compare
time scale of the cluster slowing with the time scale for su
scattering events between the target ions~with densitynt and
chargeZte) and the projectile ions~with Ze) at the cluster
velocity v. Disregarding the screening by the electrons,
corresponding collision raten can be obtained by using th
Rutherford cross section, accounting for all collisions wi
for example, deflection angles in the center of mass sys
larger than 90°. This raten5pnt(ZtZe

2/4pe0m)
2v23 ~with

the reduced massm) depends strongly on the charge states
the involved ions, as well as on the cluster velocity.

The evaluation of the amount of velocity spread nee
detailed investigations. A first step extending the dielec
response description to clusters with small velocity sprea
which results in an explicitly time-dependent stoppi
power, was performed by Lontano and Raimondi@20# for hot
and classical target plasmas. Despite open questions,
poned to a future work, we believe it reasonable for an ov
view on the features of correlated stopping to give all io
the same velocityvi5v.

C. Validity of linear response for ion clusters

The linear response description~4! and~6!, at present the
most powerful theory to account for correlation effects in i
stopping, is restricted to weak perturbations of the tar
caused by the ion projectiles. In particular, for small i
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56 973CORRELATED ION STOPPING IN PLASMAS
clusters with high total charge, this restriction may becom
very serious one and has to be studied carefully. We
recall the condition for the validity of Eqs.~4! and~6! in the
isolated single ion limit@N51,S(k)51# and then extend
these considerations to arbitrary ion distributions.

1. Weak coupling for single ions

To quantify the strength or degree of the perturbation
the target electrons as caused by a single ion, we first es
lish an estimate for the local potential energyVei(r ) of a
target electron in the field of the moving ion by

Vei~r !5
Ze2

4pe0r
F12expS 2

r

| r
D GexpS 2

r

ls
D . ~9!

Here the factor}@12exp(2r/|r)#/r is a simple approxima-
tion for the expectation value of the electron-ion interact
Ze2/4pe0r , when the electron is represented by a wa
packet centered at distancer from the ion and of width
| r5\/mv r corresponding to the relative velocit
v r5uve2vu ~the reduced mass is replaced by the elect
massm for heavy projectiles!. This factor accounts for quan
tum diffraction effects at short distances;| r , while the
exponential factor exp(2r/ls) added on top accounts for th
screening at large distances. Here we assume a velocity
pendent screening lengthls of the formls5^v r&/vp for all
densities and temperatures, where^ & denotes the averag
over the electron distributionf (ve) and vp5(e2n/me0)

1/2

the plasma frequency. The potential energyVei(r ) decays
monotonically with increasingr for arbitrary| r andls . To
avoid misinterpretation we emphasize that the approxima
expression for the potential energy~9! will be used in the
following to derive a definition of a linear, semilinear, and
nonlinear ion-target coupling regime, and to develop a c
rection to the linear response stopping for ion clusters
order to extend it from linear into semilinear regime. Expre
sion ~9! serves only this purpose, but doesnot enter the cal-
culations of the stopping power as an effective ion-elect
interaction. Thus its explicit form is of minor significance
long as both important physical phenomena, the wave na
of the electrons and the collective screening, are mode
sufficiently well. While screening results in a decay fas
than 1/r on distances of the order of;ls , the wave nature
of the electrons modifies the Coulomb potential on a sc
;| r resulting for decreasingr in a transition from the 1/r
behavior toV(r→0) }1/| r , when the wave packet is cen
tered on the ion. This behavior is approximated by the sim
exponential formV(r )}@12exp(2r/|r)#/r ~9!. At low ion
velocities this agrees with the well-known approximation
an effective ion-electron potential in the semiclassical lim
@21#, when the thermal velocity of the electrons is inserted
relative velocityv r .

The projectile represents a weak perturbation on a ta
electron, if the potential energy from Eq.~9! is smaller than
the energy of the electron, that is, the kinetic energymv r

2/2
~for ideal plasmas!. FromVei(r )<mv r

2/2 we obtain the cor-
responding inequality

w~r !5
Vei~r !

mv r
2 5

b0
r F12expS 2

r

| r
D GexpS 2

r

ls
D<

1

2
,

~10!
a
st
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where b0 is the classical collision diamete
b05Ze2/(4pe0mv r

2). Inspecting Eq.~10! we have to distin-
guish two situations.

~a! The linear regime. SinceVei(0)>Vei(r ), the local
condition for a weak perturbation~10! is satisfied globally
for

h5
Ze2

4pe0\v r
5
b0
| r

5 lim
r→0

w~r !<
1

2
, ~11!

where we have introduced the Coulomb or Bloch parame
h, which reads for the averaged relative velocity^v r&

h5
Ze2

4pe0\^v r&
5

Zar s
~11Q/21~v/vF!2!1/2

. ~12!

Here we approximated the mean electron velocity^ve& by
a simple interpolation between the Fermi velocityvF and
the thermal velocityv th5(kBT/m)

1/2 as ^ve&
25vF

21v th
2

and ^v r& by ^v r&/vF5(^ve&
21v2)1/2/vF5@11Q/21(v/

vF)
2] 1/2, sinceQ52v th

2 /vF
2 . The characterization of a wea

perturbation by the assumption~10! in connection with
condition ~11! is confirmed by the behavior of the electro
densityr in induced by the potentialfp5Ze/4pe0r of an ion
at rest (v50). A calculation of the induced density at pos
tion r50, using the linear response relationr̃ in(k)5
Ze@1/«(k,v50)21], yields r in(r50)/r0}h, that is, the
induced density is small compared to the unperturbed den
r05en for small h. Further, the linear regime of a sma
Bloch parameter coincides with the applicability of the fir
Born approximation for the ion-electron scattering, valid
the high energy regimeh!1. In fact, instead of deriving the
stopping expression~4! from the induced electrical potentia
it can be obtained alternatively from the energy and mom
tum transfer in ion-electron scattering events calculated
the first Born approximation for thedynamicallyscreened
potential of a clusterf̃c5r̃ (k)/k2e0«(k,v), that is, f̃p
5Ze/k2e0«(k,v) for a single ion~Born-RPA @22#!. In par-
ticular, for parametersZ,n,T,v in agreement with Eqs.~11!
and~12! the stopping has a pure quadratic dependence on
charge, as indicated in Eq.~6!.

~b! The semilinear regime. Relations~11! and ~12! dem-
onstrate that the coupling always remains within the lin
regime for sufficiently high projectile velocitiesv, while this
is not the case at moderate velocities, in particular, for h
charge statesZ. A usual way to overcome the limitation o
the dielectric formulation to the linear regime and, hence
extend the linear response treatment to a larger set of pa
eters, is the restriction of thek integration in Eq.~4! through
certain upper cutoffskm . Of course, at the expense of intro
ducing some arbitrariness. The corresponding semilinear
gime is characterized as follows. We reconsider the lo
condition for a weak perturbation~10! and look for a critical
distancer c.0, so that forr.r c @i.e., Vei(r c).Vei(r )# the
local condition for a weak perturbation~10! holds, which
definesr c through

w~r c!5 1
2 . ~13!

The ion now represents a strong perturbation forr,r c , a
weak one forr.r c and, of course, no perturbation forr of



e
nd

a
its
th
-
ng
in
ly

a

o
e
la

is

i-
A
fo

he
g
ig
nt

d

g

p
m

in
on

gt

of

this
at-
o
pro-
sis-
in

of
on

at
ng
hav-

ff
r

ic
e

ry

mic
ddi-

the
ith

the

in
of

n
cal
r

974 56GÜNTER ZWICKNAGEL AND CLAUDE DEUTSCH
the order ofls and larger, where the ion potential is screen
out completely. From this we establish the necessary co
tion

r c!ls ~14!

for using a linear response description. Then, roughly spe
ing, the volume}r c

3 where the perturbation is strong and
contribution to the stopping are very small compared to
whole interaction volume}ls

3 and the total stopping, respec
tively. We thus intend to exclude this small region of stro
perturbation from the linear response treatment, while tak
into account its small contribution, by introducing a suitab
defined cutoff km in the k integration in Eq. ~4!, with
km;1/r c .

To proceed, we turn to the binary collision treatment as
alternative approach to the stopping of single ions@23–27#.
There the stopping arises from averaging binary collisions
the ion with not mutually interacting electrons, while th
collective medium response is considered, in part, by rep
ing the pure Coulomb ion-electron interaction by astatically
screened~Yukawa! potential, where the screening length
an external parameter. In the linear regimeh!1, the Born-
RPA result~4! is, of course, superior to a first Born approx
mation in the binary collision model, since the Born RP
automatically accounts for the screening and, in addition,
the dynamic polarization processes~plasmon excitation!. The
binary collision approach yields identical results only in t
limit of static response (v→0) when the correspondin
static screening length is used and fits the Born RPA at h
velocitiesv@^ve&, if one introduces the velocity depende
screening lengthls5v/vp . However, the binary collision
description is not restricted toh!1, and works, for known
ls(v), at all Coulomb parameters including the limith@1
of classical trajectories. Based on the expressions obtaine
@24–28# the binary collision stopping powerSbc for any ion
velocity v and degeneracyQ can be approximated by

Sbc5Z2h~v !F lnS 2ls

| r
D2

1

2
ln~11g2h2!G , ~15!

which approaches the exact results@26,27# in the limit
ls@b0 ,| r . Here| r and h are defined as above, insertin
the relative velocitŷ v r&5(^ve&

21v2)1/2, lng50.577 . . . is
Euler’s constant andh(v) is a linear function inv for
v!^ve& and goes}v22 for v@^ve&. For its explicit form
see, e.g.,@27#. This result can now be compared to the sto
ping powerSkm , obtained in the linear response formalis
~4! ~for N51! when the k integration is restricted to
k<km . Skm is of the same form asSbc ~15!, i.e., a velocity
dependent function times a logarithmic term and, ignor
some unimportant differences in the corresponding functi
h(v), the ratio of both stopping powers reads

Sbc
Skm

'
ln~2ls!2 ln@| r~11g2h2!1/2#

ln~kmls!
. ~16!

Here the velocity dependent effective screening len
ls(v) is taken from the linear response stopping power~4!
with cutoff km ,Skm} ln(kmls), wherekm is the external pa-
rameter andls(v) is provided by the dynamical response
d
i-

k-

e

g

n

f

c-

r

h

in

-

g
s

h

the plasma due to the dielectric function. Subsequently,
effective screening length enters the binary collision tre
ment and the stopping powerSbc . Since screening has t
obey certain constraints, e.g., complete screening of the
jectile charge, such a procedure does not result in a con
tent description in general, while it remains consistent with
a first Born approximation as discussed in@29#. Here we
focus only on the semilinear regime. There, the region
strong perturbation close to the projectile is per definiti
small compared to the region where the linear response~that
is, first Born! is valid. Thus screening, which takes place
large impact parameters, is negligibly affected by the stro
perturbation and remains close to the linear response be
ior.

Comparison~16! now suggests the choice of the cuto
km52/| r(11g2h2)1/2. Beyond the linear regime, fo
h@1(b0@| r), we have km52/g| rh'1/b0, whereas the
definition of the critical distancer c by Eqs. ~10! and ~13!
@for r c@| r and r c!ls according to Eq. ~14!# yields
2/r c'1/b0. In the linear regimeh!1 of the Born RPA
no cutoff is needed at all, nevertheless, we can employkm
as defined above, because nowkm52/| r and it coincides
with the cutoff originated from the behavior of the dielectr
function and is intrinsic to the Born RPA. In any case, w
have bo!ls and | r5a(3/2)1/2„j(11Q2)…1/2/(v r /vF)

2ls
,j1/2ls!ls ~for an ideal plasmaj!1), which are the pre-
conditions for deriving expression~15!.

In summary, we obtain from comparing with the bina
collision approach, a recipe to determinekm from h and r c
by defining

km55
2

| r~11g2h2!1/2
, h< 1

2

2

| r@11~g/2!21~r c /| r !
2#1/2

, h. 1
2 .

~17!

As a consequence, the stopping power gets a logarith
dependence on the charge in the semilinear regime in a
tion to the quadratic one. In a classical plasma (Q@1) with
Debye screening andh@1, r c52b0, we recover in Eq.~17!
the commonly used cutoffkm51/b0 and in the definition
~14! of the semilinear regime (r c52b0!ls) the weak cou-
pling condition

2b0
ls

5
Z

2pnlD
3 @11~v/v th!

2#3/2
!1, ~18!

where the ion charge state has to be small compared to
number of electrons in the dynamical screening sphere w
ls(v)5lD@11(v/v th)

2#1/2 @30#.
We will add some remarks to stress the content of

preceding consideration. Using the cutoffkm52/
| r(11g2h2)1/2 in the dielectric linear response results
nothing else but a quantal-classical Bloch modification
stopping forh>1 @23,24,26,27,31#. We do not only intend
to reproduce this well-known form of the Bloch correctio
but also to establish the connection between the lo
strength of perturbationw(r ) ~10! and the cutoff paramete
km as obtained in recipe~17!, where km5km(r c) for
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h.1/2 withw(r c)51/2 @see Eq.~13!#. In Sec. II C 2 we use
this relation to derive an approximation for the Bloch mo
fication for the stopping of ion clusters. There, an exact c
culation of the Bloch contribution to stopping is not easy
achieve, in general, since it requires the knowledge of
scattering phase shift for the complex scattering potentia
an ion cluster including multiple scattering events. So far
only addressed the Bloch modification of stopping for se
linear ion-target coupling. There are also possible correcti
due to a higher order target response, as contributions}Z3

~Barkas! ~see, e.g.,@32,33#!, which might compensate in cer
tain situations, at least in part, the always negative Blo
term @31#. For the determination of the recipe to obtain t
cutoff km for a single ion~17! or an ion cluster as given
below, these higher order contributions are of no, or min
importance, because they have to be added both to the li
response expression with cutoffSkm and the binary collision
stopping powerSbc . The screening behavior should only b
affected slightly, since higher order response contributi
remain always small compared to the leading linear respo
term in the linear and semilinear regime. They may, ho
ever, alter the final results for the stopping power with
spect to the linear response and Bloch terms only. The
tension of the dielectric treatment of cluster stopping into
semilinear regime, discussed below, takes only into acco
the Bloch type correction related to small impact paramet
We assume that it is usually the more important correcti
since strong coupling occurs only at small~compared to the
screening length! distances. Nevertheless, further investig
tions are needed to determine the possible higher order
larization effects on ion cluster stopping for semilinear co
pling.

To underline the significance of the semilinear regime
small clusters with high total charge, which are equivalen
their behavior to highly charged single ions, we show in F
1 the target parameters (n,T) corresponding to the linear
semilinear, and nonlinear regime for an ion of charge s
Z515 and different relative velocitieŝv r&. The boundary
which separates the linear regime at high temperatures
high densities from the semilinear one is indicated by
dashed curves forh51/2 given by definition ~11! for
Z/^v r& 5 15, 5, 1 with^v r& in units of ^ve&5(vF

21v th
2 )1/2.

For Z515 this corresponds to an ion velocity small com
pared to the mean electron velocityv!^ve&, a medium ve-
locity v&3^ve&, and a high velocityv'15̂ ve&, as well as to
all other combinations of the sameZ/^v r& resulting in the
sameh @see Eq.~12!#. The dotted curves separate the sem
linear from the nonlinear regime at low temperature and l
densities employing the conditionb0 /ls51, obtained by an
approximative solution of Eq.~13! for r c'ls as an upper
limit of r c in definition ~14!, whereb0 /ls51 is plotted for
Z515 and ^v r&51 ^ve& and 3 ^ve&. The curve
^v r&515 ^ve& would already be outside the considered p
rameters. These curves also apply to other values ofZ and
^v r& for the sameZ/^v r&

3}b0 /ls . Hence, Fig. 1 shows tha
the linear regime for highly charged ions or clusters at l
velocities lies at extreme temperatures and densities, w
the semilinear regime covers a much larger region and
modest velocities already the wholen,T region of interest
for the given chargeZ515. For higher charges one sta
l-
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even for large velocities within the semilinear region, wh
the linear one lies far beyond.

2. Weak coupling for ion clusters

For ion clusters things are much more involved, since
perturbing potential is the sum of the potentials of the clus
constituents and a comparison with a binary collision the
is not possible any more, except for the case of a point
cluster where the cluster size as a whole is small compare
| r . Hence, we propose to extend the above considerat
for single ions to an appropriately defined cluster potent
in order to get the conditions for weak perturbation, as w
as the cutoff required for a cluster in the semilinear regim

We start with the potential energy for an electron in t
field of the whole clusterVce as a superposition of the singl
ion expressionVei given by Eq. ~9!, Vce(r )5( iVei(ur i
2r u), where we assumed for simplicity equal charges of
ions. As for a single ion, the strongest perturbation is cau
at the ion locationr i . In the cluster, the potential energy
the position of, for instance, thej th ion Vce(r5r j ) may,
however, exceed the single ion value at the orig
Vei(r50) due to the vicinity of the other (N21) ions. For
measuring the strength of the perturbation it is thus reas
able to choose the position of an ion in the cluster as
origin and to perform subsequently an average over theN
possibilities. This establishes the following mean poten
energy for an electron in the field of the cluster:

FIG. 1. The different regimes for the description of the ener
loss of ions in an electron plasma of densityn and temperatureT.
The dashed curvesh51/2 separate the linear regimeh,1/2 at high
temperatures and densities from the semilinear regime, whic
located between the linear regime and the nonlinear regime bo
ary represented by the dotted curvesb0 /ls515. From right top to
left bottom, both dotted curves correspond toZ/^v r&

3515 and
15/27, respectively, wherêv r& scales in̂ ve&(n,T)5(vF

21v th
2 )1/2.

The nonideal targets are located below the solid curvej51, the
degenerate targets below the dashed-dotted lineQ51.
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^V~r !&5
1

N(
i

(
j
Vei~ ur i2r j2r u!

5Vei~r !1
1

N(
i

(
j5” i

Vei~ ur i2r j2r u!. ~19!

However, to provide a useful tool to determine the quantit
of interest, some further averages on^V(r )&, at least an an-
gular one, are still necessary. If we are interested again in
common features of correlated stopping rather than in
properties of a single, selected cluster, an average ove
ensemble of clusters, as described above for deriving
mean stopping power~6!, results in an averaged expressi
^^V&& which reads with the help of the pair-distribution fun
tion g(ur i2r j u) ~assuming a spherical cluster!

^^V~r !&&5Vei~r !1E d3 r̃ Vei~ u r̃2r u!g~ r̃ !. ~20!

This averaged quantityŠ^V(r )&‹ now allows us to define the
linear and semilinear regime and the parameterr c in a man-
ner analogous to the single ion case considered above
introducing the quantitywc , the definitions~10! and~13! are
altered to

wc~r !5
^^V~r !&&
mv r

2 <
1

2
, wc~r c!5 1

2 . ~21!

Keeping in mind thatw(0)5h @Eq. ~11!# for a single ion, we
suggest as an extension of the single ion case~17! to ion
clusters the choice of a cutoff for clusters

km
c 55

2

| r@11g2wc
2~0!#1/2

, wc~0!< 1
2

2

| r@11~g/2!21~r c /| r !
2#1/2

, wc~0!. 1
2 ,

~22!

with wc(0) andr c from Eq.~21!. Except for the linear Born-
RPA regime 1/2.Nh5Nw(0)5max„wc(r )…, where
km
c '2/| r , the delicate interplay of cluster and target para
eters requires a detailed study ofwc andkm

c for the ion clus-
ters of interest. We resume these investigations for the
amples discussed below.

D. Some provisional conclusions and definitions

We conclude this section on the description of the st
ping of ion clusters by summarizing some general featu
contained in the stopping formulas~4! and ~6!. In the pure
linear regime@wc(0)!1#, the linearity and the connecte
superposition principle allow the correlated part of the st
ping to be entirely built up by two ion pair contribution
where each pair already exhibits every basic feature of
related stopping. This can be expressed by reformulating
~4! as a contribution of single isolated ions and a correlat
partC, which is the sum of binary contributions

S5(
n

Zn
2S11C5(

n
Zn
2S11(

n
(
m5” n

ZnZmC2~rnm!,

~23!
s

he
e
an
e

By

-

x-

-
s

-

r-
q.
n

where rnm5rn2rm , S1 the single ion stopping
S15C2(rnm50), andC2 the pair correlation function

C2~r !5
e2

e0~2p!3
E d3k

k• v̂

k2
ImF 21

«~k,k•v!Gexp~ ik•r !,
~24!

which depends only on the components ofr parallel and
perpendicular to the velocityv. This emphasizes the impor
tance of the detailed studies of ion pairs@1,3,8,9,34# and
simple structures built up on a few pairs@6,10#. To quantify
the effects of correlations on the cluster stopping we de
the enhancement factore as the total cluster stoppingS, with
respect to the isolated particle stopping(nZn

2S1

e5
S

(nZn
2S1

511
C

(nZn
2S1

. ~25!

As a boundary for the binary correlationC2 we have
uC2u<uS1u and uC/S1u<((nZn)

22(nZn
2 from the definition

above. Because the total stoppingS ~4! and~6! is of the same
sign asS1, we get

0<e<

S (
n

ZnD 2
(
n

Zn
2

, ~26!

with e,1 belonging to the case of a reduction of stopping
correlations while the upper limits represent the compl
coalescence of the clusters. For clusters of equal charges
simplifies to 0<e<N. These definitions and ratios are ind
pendent of the plasma parameters and apply to hot clas
plasmas as well as to electron jellium (T50) provided that
the coupling remains within the linear regime. In the sem
linear regime the functionsC2 depend on the whole cluste
structure via the cutoffkm

c ~i.e., r c). The stopping of the
cluster cannot be constructed only by calculating and su
ming up the pair correlationsC2(rnm) for the relative posi-
tions rn2rm . Now, the knowledge on the total distributio
of the ions $r i% is required and Eq.~23! is replaced by
S5(nZn

2S1
c1(n(m5” nZnZmC2

c(rnm), where the subscriptc
denotes this dependence on the whole structure. That is
~24! changes to

C2
c~r !5

e2

e0~2p!3
E

uku<km
c
d3k

k• v̂

k2
ImF 21

«~k,k•v!Gexp~ ik•r !,
~27!

andS1
c5C2

c(rnm50). The boundaries given in Eq.~26! re-
main valid. However, one usually cannot expect the up
one for complete coalescence. In this limit,e/N, the en-
hancement divided byN for a cluster ofN ions with charge
Z, is just the ratio of the stopping power of a single ion wi
chargeNZ to N2 times those of a single ion with chargeZ.
This quantity is shown in Fig. 2, as function of the veloci
v and for differentN,Z and parameters of the target plasm
using the cutoffkm andkm

c determined by the definitions~17!
and ~13! and ~22! and ~21! with wc(r )5Nw(r ). The addi-
tional dependence of the stopping power on the charge in
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semilinear regime results in a considerable lower enhan
ment in a wide range of target condition, in particular, fo
high chargesNZ and modest velocities. For high velocities
the semilinear regime merges into the linear regime a
e→N, while for small v the nonlinear regime may be
reached ifr c→ls according to condition~14!. For cases in
Fig. 2 where this happens the corresponding curves are tr
cated atr c.0.25ls .

For an ion cluster with finite size, results on the enhanc
ment in the semilinear regime will be given in Sec. III.

III. RESULTS FOR SOME GENERIC EXAMPLES

A. Spherical ion clouds of Gaussian shape

As a first example we study the stopping of a spheric
ion cloud, where the ions are distributed independently
each other around the center of the cluster with a Gauss
probability density resulting in

g~r !5~N21!S 1

4ps2D 3/2expS 2
r 2

4s2D ,
S~k!511~N21!exp~2k2s2!, ~28!

with the distance between two ionsr and the rms radiuss as
a measure for the cluster size. This ion configuration allow
for a relatively easy mathematical treatment, but, neverth
less, represents a rather useful model to investigate the

FIG. 2. Enhancemente/N for a cluster ofN ions with charge
stateZ in the case of complete coalescence and for different targ
densitiesn and temperaturesT as a function of the cluster veloc-
ity v scaled in units of̂ ve&(n,T)5(vF

21v th
2 )1/2. For an electron

jellium (T50) with n51.6131024 cm23 (r s51) and
Z51, N520 ~dashed-dotted curve! and classical plasmas with
T512 eV, n5431020 cm23, Z51, N520 ~solid!, Z51, N5
100 ~dotted!, and T5300 eV, n51022 cm23, Z51, N520
~short-dashed!, Z510, N510 ~long-dashed!. The curves are trun-
cated when the nonlinearity becomes too strong for the pres
description to be valid.
e-

d

n-

-

l
f
an

s
e-
e-

havior of ion debris of various ion distributions produced
the fragmentation process of the cluster ions when impac
the plasma.

Rewriting Eq.~6! by settingk•v5v, the ensemble aver
aged stopping power per ion for the Gaussian cluster ta
the form

^S&
N

5
Z2e2

v22p2e0
E
0

km
c dk

k E
0

kv
dv v ImF 1

«~k,v!G
1~N21!

Z2e2

v22p2e0
E
0

km
c

dk
exp~2k2s2!

k

3E
0

kv
dv v ImF 1

«~k,v!G
5Z2S1

c1~N21!Z2C2
c , ~29!

whereS1
c ,Cc in the semilinear regime depend on the who

cluster structure via the cutoffkm
c ; see Eqs.~20!–~22!. Then,

S1
c represents a single particle stopping contribution in
presence of the cluster and is in general not identical to
stopping powerS1 of an isolated ion of the same charg
state. In the linear~Born! regime such a cutoff is not re
quired, but coincides with the intrinsic cutoff o
Im@1/«(k,v)# and S1

c5S1. The correlation partC2
c is the

averaged pair correlation function Eq.~27! as well as the
total correlation part of stopping divided byN(N21). We
mainly focus the discussion of correlated stopping of
Gaussian cluster on the enhancemente, which now reads

e5
^S&

NZ2S1
5
S1
c

S1
1~N21!

C2
c

S1
. ~30!

In the limits of large velocitiesv@^v& ~any degeneracy! and
for low velocities for highly degenerateQ!1 and classical
plasmaQ@1, an analytical evaluation of the stopping pow
given by Eq.~29! with the RPA dielectric function@17,22# is
possible. By an interpolation between these analytical
pressions we derived a formula for the enhancemente at all
v andQ, which agrees well with the numerical solutions f
^S&/(NZ2S1) and allows for a fast calculation of the en
hancement. This interpolation formula is expressed in te
of a functionz, which is connected to the enhancement
the Gaussian cluster by

e5
z~v,0,km

c !

z~v,0,km!
1~N21!

z~v,s,km
c !

z~v,0,km!
, ~31!

and wherez is defined as

z~v,s,k!5
b2exp~2s2d2!

b21d2
212~11s2b2!exp~s2b2!

3@E1„s
2~b21d2!…2E1~s2b2!#

1E1~s2d2!2E1~s2k2!, ~32!

with the exponential integralE1(z)5*z
`exp(2t)/t dt and the

coefficientsb,d adapted to fit the exact solution in th
known limits

et

nt



ity

t
o

-

n

th

t
e

u-

r
Th
t
he
f

s
b
by

th
d
n

ec
ina

po-
s

a-

es.

n

and
jel-
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b25

31 3
2 Q10.408v2S 3.8190.408

1
3

2
Q D

~11 3
2 Q!~11v2!

, d5
k~11v2!
11kv3

.

~33!

Here v is scaled in units of the mean electron veloc
^ve&5vF(11Q/2)1/2,s in units of l0 and k in 1/l0, with
the static screening lengthl05^ve&/vp . This scaling behav-
ior of z and, hence, of enhancemente, assigns an importan
role to the ratioss/l0 andv/^ve& as decisive parameters t
characterize correlated stopping.

The cutoffskm andkm
c entering the functionz are given

by definition ~17! for km and by evaluating Eqs.~20!–~22!
for the Gaussian cluster to obtainkm

c . Insertingg(r ) Eq. ~28!
in Eq. ~20! yields r c as the solution ofwc(r c)51/2, where
wc(r ) has the explicit form

wc~r !5w~r !1
N21

2

b0
r FLsS r , 1ls

D2LsS r , 1| r
1

1

ls
D G ,

~34!

with the single ion expression~10! as defined in the preced
ing section, the dynamical screening lengthls5v r /vp
5l0(11v2)1/2 and

LsS r , 1l D5expS s2

l2D FexpS 2
r

l D erfcS 2
r

2s
1

s

l D
2expS rl D erfcS r

2s
1

s

l D G . ~35!

Here erfc is the complementary error functio
erfc(z)52/Ap*z

`exp(2t2)dt.
The resulting influence on the stopping, respectively,

enhancement, due to the dependence of the cutoffskm
c ,km on

the cluster and ion parametersN, s, Z, andv will be dis-
cussed later. For the moment we set the cutoffs
km
c 5km52/| r . For this setting, Fig. 3 shows the enhanc
ment e as function of the cluster sizes obtained by Eqs.
~31!–~33! ~curves! compared to the exact numerical sol
tions of Eq. ~29! ~crosses! for a cluster ofN510 ions for
different velocitiesv and two sets of target parameters, co
responding to an electron jellium and a classical plasma.
agreement of formula~31! with the exact result is almos
perfect for high and low velocities where it was fitted to t
analytic results and displays deviations of some percent
intermediate velocities. The presented expression~31! thus
allows rather accurate and fast calculation, and can be u
in future work to include the, so far, neglected Coulom
explosion into the description of the cluster slowing down
replacing the cluster sizes by a time dependent ones(t).
Using a simple model for the explosions(t), such a proce-
dure yields a fast and valuable overview on the effects of
Coulomb explosion for the various target and cluster con
tions of interest, which is hardly achievable with very expe
sive full calculations. In addition, Eqs.~31!–~33! are much
more suitable for a good understanding of the basic asp
of correlated stopping and the physics behind it than orig
expression Eq.~29!. Inspecting Eqs.~31!–~33!, for this pur-
e

o
-

-
e

or

ed

e
i-
-

ts
l

pose, more closely, we first recall the behavior of the ex
nential integral E1(z) for small and large argument
(lng50.577 . . . )

E1~z!;H 2 ln~z!2 lng1O~z!, z!1

exp~2z!

z F12
1

z
1

2

z2
1OS 1z3D G , z@1,

~36!
from which we obtainz in the special case of complete co
lescences50 as

z~v,0,k!5
b2

b21d2
211 lnS k2~b21d2!

b2d2 D ~37!

resulting in the enhancemente(s50) already presented in
Fig. 2

e~s50!5N
z~v,0,km

c !

z~v,0,km!
'N5

ln@~km
c /b!211#21

ln@~km /b!211#21
, v!1

ln~vkm
c !

ln~vkm!
, v@1,

~38!

where we usedkm
c /b,km /b@1 and vkm

c ,vkm@1, respec-
tively, valid for the considered linear and semilinear regim

For the general case of arbitrarys the different values of
b, d, andk are directly related to three different correlatio
regimes.

1. Short range correlations: Complete coalescence

For skm
c !1, which implies alsosb,sd!1, because

b(v,Q);1, d&km
c , and km

c @1, all exponential integrals

FIG. 3. Enhancemente for a Gaussian cluster ofN510 ions
with charge stateZ51 as function of the cluster sizes in units of
the screening lengthl0(n,T)5^ve&/vp5(vF

21v th
2 )1/2/vp . The

curves show the results of the presented interpolation formula
the crosses the corresponding exact numerical evaluations for a
lium (T50) with n51.6131024 cm23 (r s51) and cluster veloci-
ties v/^ve&5v/vF56 ~long-dashed curve! and 10 ~short-dashed!
and for a classical plasma withT512 eV, n5431020 cm23 for
v/^ve&5v/v th50.1 ~solid!, 3 ~dotted!, and 6~dashed-dotted!.



n

m

-
le
lik
es
on
th
g

-

for

of

sing

56 979CORRELATED ION STOPPING IN PLASMAS
in z can be expressed asymptotically for small argume
through E1(z);2 ln(z)2lng. This results in z(v,s,km

c

!1/s);z(v,0,km
c ) given by Eq.~37! and e;e(s50) Eq.

~38!. The physical origin for this behavior is obvious fro
the definition ofkm

c , where we haves!1/km
c '| r in the

linear regime ands!1/km
c 'r c in the semilinear regime, re

spectively. While in the linear regime the cluster is smal
than the electron wavelength and thus appears as point
the radiusr c;b0 remains smaller than the distance of clos
approach of the classical trajectories for most of the electr
in the semilinear case. This is consistent with the form of
cluster potentialwc ~34! evaluated in the two correspondin
limits of smalls

wc~r !55
Nb0
r F12expS 2

r

| r
D G for s!| r , r'| r!ls

Nb0
r

expS 2
r

ls
D for s!r c , r'r c@| r .

~39!
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2. Long range correlations: Single ion stopping

In the limit skm
c ,sb,sd@1, that is, cluster large com

pared to the screening lengths@ls'max(1/b,1/d)
'(1/b21v2)1/2 ~in the used scaling!, the contribution of the
correlation part to the stopping vanishes like

z@v,s@max~1/b,1/d!,km
c @1/s#;

1

s4b4 2
exp~2s2d2!

s2~b21d2!

3S 12
b2

b21d2D
~40!

and behaves for larges as 1/s4. This qualitative behavior
can also be deduced simply from the original expression
the stopping~6! with the structure factor~28!. For the present
Gaussian cluster without any further structure the limit
long range correlations is just the limit of isolated ions.

3. Intermediate range regime

When the cluster is not pointlike, that is,skm
c @1, but

smaller than the screening length,s!max(1/b,1/d), the en-
hancement shows a logarithmic increase with decrea
cluster sizes, wherez can be approximated as
z~v,s,km
c @1/s!;5

b2

b21d2
212 lng2 lnS s2b2d2

b21d2 D , sb,sd!1

212 lng2 ln~s2b2!, sb!1,sd@1

2 lng2 ln~s2d2!, sb@1,sd!1.

~41!
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In summary, we have for a given velocityv a dependence o
the enhancemente on a growing cluster sizes, which is
characterized by a constant value for small clust
s!1/km

c , by a change to a logarithmic decrease starting
s'km

c and persisting untils reaches the~dynamical! screen-
ing length. Finally one approaches the isolated, single
limit e→1 for larger s. Becausekm

c and the dynamica
screening lengthls are increasing functions for increasin
cluster velocities, the boundaries of the logarithmic dep
dence ons are extended to smallers via km

c at one end of
the scale and to largers via ls at the other one. This velocity
dependence as well as the dependence of the target c
tions on the transition to the regime of complete coalesce
is nicely pictured by the various cases of Fig. 3, wheres is
given on a logarithmical scale.

In this context, it is also of interest to have a look at t
case of large velocitiesv for a cluster with fixed sizes. In
particular, we regard the conditionsv@1 ~in units of ^ve&)
and a velocity which is sufficiently high so that the cluster
both non-point-like (skm

c @1) and small compared to th
dynamical screening lengthls , that is in the dimensionles
quantitiess!v. Becaused;1/v and thussd!1, d!b, we
have z(v,s,km

c );2 lng2ln(s2/v2) while z(v,0,k5km
c ,km)

;2 ln(kv). This results in the enhancement
s
t

n

-

di-
ce

e5
ln~vkm

c !

ln~vkm!
1~N21!

2 lng1 ln~v2/s2!

2 ln~vkm!

;11~N21!
ln~v !

ln~v2!
5
N11

2
, ~42!

where the terms to the right represent the limitv→`, hence
ln(v)→` and km

c→km→2l0 /| r}v. The result
e(v→`)→(N11)/2 has to be considered mainly as a ma
ematical one, because we deal with a description of co
lated stopping, which is restricted to nonrelativistic velo
ties. Depending on the given parameters of the cluster
the target this limit may, however, be reached already
nonrelativistic velocities and has the following physic
meaning. As known, the stopping of a single ion at hi
velocities is to one half due to single particle excitations a
to the other half to collective excitations of plasma wav
The wavelengthlp of the plasmons excited with the phas
velocity v is lp52pv/vp , that is, in scaled values
lp52pv. For this plasma waves withlp@s the cluster
appears as pointlike and the stopping of the cluster
collective excitations is the same as the stopping by col
tive excitations of a single ion with the total chargeNZ.
The single particle excitations resolve the cluster struct
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and correspond toN times the single particle contribution
for single ions with chargeZ. This yields in summary
an enhancement e5^S&/NZ2S15@(NZ)2/21NZ2/2]/NZ2

5(N11)/2. The velocity dependence of the enhancement
shown in Fig. 4 for different cluster sizess, numbersN of
ions and target parameters, again for the settin
km
c 5km52/| r as in Fig. 3. While the trend is visible, the
high velocity limit (N11)/2 still lies far away for the given
velocity range and parameters. It can be reached on
through the weak logarithmicv dependence ofe, given by
Eq. ~42!. For high numbers of ions and cluster sizes of th
order of the dynamical screening length a considerable e
hancement arises at high velocities. It remains, neverthele
small compared to the achievable limite;N/2. Such in-
creases of correlated stopping for high velocities have
documented also for other cluster configurations@5,35# with
comparable values of the cluster size with respect to t
screening length.

To investigate the behavior of enhancement including t
semilinear regime the corresponding cutoff
km
c 5km

c (N,Z,v,s) andkm5km(Z,v) have to be determined
following the procedures developed in the preceding secti
and then included in the expressions for the enhanceme
This will change the maximal achievable enhancement,
already demonstrated, and, in particular, the dependence
the ion numberN. However, for a lot of cases one remain
within the linear regime, namely, for large or weakly charge
clusters and at high velocities. There theN dependence is
purely linear for a givens as suggested by the definitions
~29!–~31!.

FIG. 4. Enhancemente for a Gaussian cluster of ions with
Z51 as a function of the cluster velocityv in units of ^ve&5

(vF
21v th

2 )1/2. For a target plasmaT512 eV, n5431020 cm23

and clusters withN520 ions and a sizes50.05 ~solid curve!, 0.5
~dotted!, 5 ~dashed-dotted!. For clusters ofN5100, s 5 5 with the
same target conditions~short-dashed! and for a jellium target
T50, n51.6131024 cm23 (r s51) ~long-dashed curve!. The
cluster sizess are in units of the screening lengthl0(n,T)
5^ve&/vp .
is

g

ly

e
n-
ss,

e

e

e

n
nt.
s
on

The enhancement obtained by taking the nonlinear effe
contained inkm

c into account is shown in Figs. 5 and 6 for
cluster ofN 5 60 ions at velocitiesv54 and 10 for various
target conditions and ion chargesZ. The enhancement exhib
its the typical logarithmic increase for decreasings starting
when the cluster size becomes smaller than the dynam

FIG. 5. Enhancemente for a Gaussian cluster ofN560 ions
and velocityv/^ve&54 as a function of the cluster sizes in units
of l0(n,T)5^ve&/vp5(vF

21v th
2 )1/2/vp . For plasmas withT5

12 eV, n5431020 cm23 and ions with charge stateZ51 ~solid
curve!, T50, n51.6131024 cm23, Z51 ~dashed-dotted!,
T5300 eV, n51022 cm23, Z51 ~short-dashed! and Z55
~long-dashed!. In each case, the dotted curves exhibit the enhan
ment for a pure linear behavior of the stopping when nonlin
effects which appear in the semilinear regime are neglected.

FIG. 6. Enhancemente for a Gaussian cluster ofN560 ions as
in Fig. 5 but now for a velocity v/^ve&510 and for
T512 eV, n5431020 cm23, Z51 ~solid curve! and Z55
~long-dashed!, T50, n51.6131024 cm23, Z51 ~dashed-dotted!
andT5300 eV, n51022 cm23, Z51 ~short-dashed!.
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56 981CORRELATED ION STOPPING IN PLASMAS
screening length which grows with velocity. This increa
stops at a certain cluster size and approaches a constant
of maximal enhancement, which lies, for most of the p
sented cases, well below thea priori limit e5N reached by
the dotted curves, which are obtained by ignoring the eff
of an increasing perturbation on the target for decreasins
and settingkm

c 5km , which is independent ons. At the point
where the enhancement reaches this constant value
shrinking cluster is no longer a weak enough perturbation
remain within the linear regime. The behavior of the e
hancement is thus monitored by the additional depende
on the cluster charge and reaches for a further decrease o
sizes the maximal achievable enhancement in the semi
ear regime. This reduction of the enhancement is signific
even at relatively high cluster velocities and will becom
more and more important for higher charge states and n
bers of ions.

To improve the simple model of the Gaussian ion dis
bution, an additional~internal! structure can be introduced
which accounts for the spacing between the ions as one
pects for real ion debris, as a consequence of the initial
rangement before fragmentation and of the mutual repuls
during the slowing down. Intending to take this into accou
in quite a general manner, as well as to benefit from
efforts for the description of the Gaussian cluster, we ag
employ a Gaussian profile for modeling this internal stru
ture by

g~r !5
N21

x3/221S x

4ps2D 3/2expS 2
r 2

4s2D F12expS 2
r 2

4§2D G ,

x511
s2

§2
. ~43!

Heres is again the measure for the cluster size as a wh
while § defines a typical interion spacing. In contradiction
the preceding model without internal structure, the proba
ity in the improved model to find two ions at the same po
tion, is zero and strongly reduced for mutual distanc
r<§. Because the volume occupied by one ion is of
order §3, while the whole cluster has a volume of abo
s3, s3/§3'N. For further simplification we chose
s2/§25N2/321 in order to getx3/25(11s2/§2)3/25N.
With this choice the structure factor has the simple form

S~k!511NH exp~2k2s2!2
1

N
expF2k2S s

N1/3D 2G J ,
~44!

while the corresponding enhancement reads

e§5
z~v,0,km

c !

z~v,0,km!
1N

z~v,s,km
c !

z~v,0,km!
2

z~v,s/N1/3,km
c !

z~v,0,km!
,

~45!

with z from Eq. ~32!. In an analogous manner, expressi
~34! for wc(r ) has to be modified using the functionsLs and
Ls/N1/3 to obtain the corresponding values forr c andkm

c . To
investigate the additional effects, we regard the relative
lue
-

ct
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o
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r-
n
,
e
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viations between both enhancementse§ ande with and with-
out internal structure given by

ne5
e§2e

e
5

2z~v,s/N1/3,km
c !1z~v,s,km

c !

z~v,0,km
c !1~N21!z~v,s,km

c !
. ~46!

As it becomes immediately clear by inspecting the relev
definitions, the difference inkm

c , for the two cases, is rathe
small and was neglected in derivingne. Because
z(v,s,km

c ) is a monotonically decreasing function ofs, the
differencene is always negative and the additional intern
structure of the cluster reduces the enhancement. This re
tion is shown not as function ofs but of the cluster velocity
v in Fig. 7, where the relative changes in the enhancem
ne are plotted for different cluster sizes and target con
tions. For small clusterss!1 ~long-dashed curve! the clus-
ter behaves as pointlike, where the internal structure is
minor importance and the reduction in the enhancem
takes a rather small almost constant value when the velo
is large enough, so that the electrons may resolve the st
ture@s/N1/3*1/km

c (v)#. For large clusters of the order of th
dynamical screening length (s;v, in the present scaling!
pronounced reductions occur at certain velocities depend
on the cluster sizes and ion numberN, where the minima in
ne are located at velocitiesvm proportional to the mean
interparticle spacings/N1/3 ~solid, short-dashed, and dotte
curves!, while in the chosen units a variation of the targ
conditions at givens andN only slightly affect thevm lo-
cation ~dashed-dotted curve!. This reduction in the

FIG. 7. Relative differencene in the enhancements for
Gaussian cluster with and without internal structure as a func
of the cluster velocityv in units of ^ve&5(vF

21v th
2 )1/2 and for tar-

getsT512 eV, n5431020 cm23 and clusters withN560 ions
and a sizes50.2 ~long-dashed curve!, 5 ~solid!, 10 ~dashed! and
N5200, s510 ~dotted!. The dashed-dotted curve belongs
T50, n51.6131024 cm23, N560 ands510. The cluster sizes
s are in units of the screening lengthl0(n,T)5^ve&/vp , the ion
charge state isZ51 in all cases.
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982 56GÜNTER ZWICKNAGEL AND CLAUDE DEUTSCH
stopping for large clusters, and medium or high velocities
a consequence of destructive interference between the
cited plasma waves, and were reported also for other type
clusters with internal structure@5,35#. A particular situation
in this regard concerns very large structures, such as
beams or bunches of ions corresponding to the li
s,N→` for a constant ion density, that is
§5s/N1/35const. For sufficiently larges at a given veloc-
ity, the beam, or bunch as a whole, is larger than the dyna
cal screening lengths@v, and the long range correlatio
limit applies where the correlation contributio
Nz(v,s,km

c ), in the enhancement~45!, vanishes like
Nz;N/s4;N21/3/§4 @cf. Eq.~40!#, and the enhancement, i
fact, always represents a reduction of stopp
e§5@z(v,0,km

c )2z(v,§,km
c )#/z(v,0,km)<1. This reduction

due to destructive interference depends only on the mean
spacing§ and increases with the density of the beam
bunch. Such behavior for beams or large clusters was alre
discussed in Refs.@36,37#.

B. N-ion chains

From the rather general and statistical description of c
related stopping discussed above, we now turn to chain
ions as an example of a well defined, highly regular str
ture. In particular, such arrangements allow for signific
interference effects of the excited wake fields and the st
of N-ion chains will complete the spectrum of the basic fe
tures of correlated ion stopping.

For a chain ofN ~pointlike! ions with chargeZe and an
equal distanceL between two neighboring ions, the char
density of this configuration is

r~r !5Zed~x!d~y! (
n51

N

d~nL2z!, ~47!

where the extension of the chain is chosen in thez direction.
The relevant product of the Fourier-transformed charge d
sity of the chain, which enters expression~4! for the stopping
power, takes the form

r̃ q~2k! r̃ q~k!

Z2e2
5 (

n51

N

(
m51

N

exp@ ikz~n2m!L#

5N12 (
n51

N21

~N2n!cos~nkzL !

5
sin2~NkzL/2!

sin2~kzL/2!
. ~48!

For such highly anisotropic structures we expect, of cours
strong dependence of the stopping on the orientation of
chain with respect to its velocity. For velocities parallel
the chain, that isv5vêz andv5k•v5kzv, the stopping per
ion is given by
s
x-
of

n
it

i-

g

on
r
dy

r-
of
-
t
y
-

n-

a
e

S

N
5Z2S1

c1
Z2e2

v22p2e0

2

N(
n51

N21

~N2n!

3E
0

km
c dk

k E
0

kv
dv v cosS nL

v

v D ImF 21

«~k,v!G

5
1

N

Z2e2

v22p2e0
E
0

km
c

dkE
0

kv
dv v

sin2SNvL

2v D
sin2S vL

2v D
3 ImF 21

«~k,v!G , ~49!

with the single ion stoppingS1
c as defined in Eq.~29!, while

the stopping per ion for a chain extended perpendicular to
velocity (v'êz) takes the form

S

N
5Z2S1

c1
Z2e2

v22p2e0

2

N(
n51

N21

~N2n!E
0

km
c dk

k

3E
0

kv
dv vJ0„nLAk22~v/v !2… ImF 21

«~k,v!G ,
~50!

whereJ0 is the Bessel function of the first kind.
To determinekm

c for the chains according to the recip
established in Sec. II, we employ the angular average

wc~r !5
^^V~r !&&
mv r

2

5w~r !1
1

N(
n

(
m5” n

1

2E21

1

d cosqw~ urn2rm2r u!

5w~r !1
b0
r

1

N(
n51

N21

~N2n!FLnLS r , 1ls
D

2LnLS r , 1| r
1

1

ls
D G , ~51!

with the ion spacingsrn2rm5(n2m)Lêz , the single ion
expressionw @cf. Eq. ~10!#, and

LnLS r , 1l D5
l

nLFexpS 2
ur2nLu

l D2expS 2
r1nL

l D G .
~52!

We reconsider the enhancemente5S/NZ2S1 for the total
stoppingS of the parallel and transversal~perpendicular!
chain Eqs.~49! and ~50! with respect to the single ion stop
pingS1 of isolated ions, that is,S15C2(r50), Eq. ~24! with
cutoff km Eq. ~17!. The resulting enhancement for a chain
N510 ions withZ51 is shown in Fig. 8 as function of the
interion distanceL for different velocities, target conditions
and orientations of the chain. In general, we recover the
havior as seen for the Gaussian cluster with a transition fr
vanishing enhancemente51 to a constant valuee'N, when
L decreases fromL@l0 to L!l0. This qualitative agree-
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56 983CORRELATED ION STOPPING IN PLASMAS
ment with the Gaussian cluster is almost perfect for transv
sal chains~long-dashed curve!. The parallel chains behave
quite similarly forL,ls , but show new additional features
for large L where some resonant structures ine appear.
These structures are due to constructive interference of
excited plasma waves. Before we turn to further discu
these interference effects, we will remark on some additio
features in Fig. 8. The onset of the increase ofe for decreas-
ing L is located at the same interparticle distance@scaled in
l0(n,T)5(vF

21v th
2 )1/2/vp# for the same velocityv but dif-

ferent target conditions~solid and dashed-dotted curves!.
The value for the enhancement in the limit of complete co
lescence is the same for the parallel and transversal chai
the same velocity~short-dashed and long-dashed!. The
somehow strange behavior of the enhancement which dec
again at lowL for decreasingL ~solid and short-dashed
curves! may be an artifact of the used procedure to work o
km
c through the spherical average~51!. Such an averaging is,
of course, less suitable for an anisotropic chain than fo
spherical structure as the Gaussian cluster. However,
concerns only some medium range of smallL, in the limit of
sufficiently smallL when the whole chain appears pointlike
we recover the correct enhancement of a single charge. F
ure 9 shows in more detail the largeL region where the
resonant structures are located. No such structures
present for a transversal chain~long-dashed curve! as well as
for a parallel chain at low velocitiesv51 for which no en-
hancement exists in thisL range. While there are~almost! no

FIG. 8. Enhancemente for a chain withN510 ions ofZ51 as
a function of the interion spacingL in units of l0(n,T)5
^ve&/vp5(vF

21v th
2 )1/2/vp . Transversal orientation of the chain

with a velocity ofv510 ~long-dashed curve! and parallel orienta-
tion for v56 ~solid! and 10~short-dashed!, all cases for a target
plasmas ofT512 eV, n5431020 cm23, and parallel orientation
with v56 in a targetT50, n51.6131024 cm23 ~dashed-dotted!.
The velocities are scaled in units of^ve&. Again, the dotted curves
display the enhancement for a pure linear behavior of the stopp
when nonlinear effects are ignored.
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wake fields for small velocities, strong interferences of t
plasma waves excited at high velocities may occur. In g
eral these interferences are destructive and yield a reduc
of stopping compared to the isolated ion value (e,1) such
as in the regionL'5–10 in Fig. 8 and between the peaks
Fig. 9. Constructive interference, which results in a sign
cant enhancement of stopping, occurs at certain value
L, where the ions in the chain are in phase with the exci
waves. Here, the wave with the strongest amplitude comp
with the dispersion relation Rev(k)5k•v and can travel in
phase with the ion chain fork52pn/L. Taking v(k) in
units of vp and Rev(k!1)51, the resonance conditio
Rev52pnv/L for a velocityv56 reads in the chosen sca
ing L512pn5L537.7,75.4, . . . . The two first possible
values agree roughly with the peak locations in Fig. 9. T
discrepancy is due to the fact that we have, for nonvanish
k>2p/L, higher plasmon frequencies Rev(k).1 instead
of Rev(k!1)51, as used for our estimate. This shifts t
peaks to lowerL and introduces a difference between t
plasma conditions~solid and dashed-dotted curves!, because
the dispersion relation fork.0 explicitly depends onn,T in
the used scaling. The plasma mode, which is selected by
dispersion relation, dominates more and more the resona
for an increasing number of ions which contribute to t
wave excitations. This enforces the resonant enhancem
and shifts it toward the corresponding valu
L52pnv/ Rev(n2p/L) ~solid N510 and dottedN5100
curves!. This behavior is witnessed more distinctly in Fig. 1
as resonance with respect to the velocity for a fixed
spacing L. The enhancement exhibits with an increa
ing length of the chain, a more and more pronounc

FIG. 9. Enhancemente for a chain of ions withZ51 and scal-
ing as in Fig. 8 now detailed for largeL. For transversal orienta
tion, N510, v510 ~long-dashed curve! and parallel orientation
N510, v56 ~solid!, N5100, v51 ~short-dashed merging with
long-dashed curve for largerL) andN5100, v56 ~dotted! for a
target plasmas ofT512 eV, n5431020 cm23; parallel orienta-
tion, N510, v56 in a target withT50, n51.6131024 cm23

~dashed-dotted!.
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984 56GÜNTER ZWICKNAGEL AND CLAUDE DEUTSCH
peak with a sharp edge for a large number of ionsN→`
towards low velocities~dashed-dotted curve!. Applying
the dispersion relation for this case withL550 and a classi-
cal plasma Rev(k)'(113k2)1/2 ~with k in 1/lD) yields
v5@(L/2p)213]1/258.14 in perfect agreement with the ob
served edge. For lower velocities only plasma waves w
shorter wave lengthL/n(n.1) can be in phase. These
waves, when exited by one ion in the chain, reach only
smaller number of further ions because they are stron
damped. For an increasing number of ions their contributi
to the total stopping does not increase as well and the
hancement due to this waves is indeed reduced for grow
N. For the same reason the enhancement due to the w
with lengthL saturates to a maximum forN→`. Beyond the
edge towards higherv, the wave with lengthL no longer
obeys the dispersion relation but is still excited, howeve
with decreasing amplitude for increasingv. For velocities
larger than shown in Fig. 10 the destructive interference
nally results in a reduction (e,1) as also apparent at low
velocities.

The dependence on the number of ions is addressed o
more in Fig. 11 which gives an impression of theN depen-
dence of the enhancement for parallel chains with differe
distancesL between the ions. For largeL we recover the
resonant structure with its slightN dependence as discusse
above, while the enhancement for smallL strongly grows
with increasingN ~note the logarithmic scale fore). Larger
enhancements for largerN, however, drop down for increas-
ing L at smallerL values than those for smallerN. This
arises, because a chain no longer appears as pointlike i
total length exceeds a certain sizeNL'1/km

c (v), which of

FIG. 10. Enhancemente for a parallel chain of ions with
Z51 and interion distanceL550 as a function of the velocityv in
a classical plasmas ofT512 eV, n5431020 cm23 for different
ion numbersN510 ~long-dashed curve!, 20 ~short-dashed!, 50
~dotted!, 100 ~solid!, andN→` ~dashed-dotted!. The spacingL is
scaled in l0(n,T)5^ve&/vp5v th /vp5lD , the velocity v in
^ve&5v th .
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course already happens at lowerL for larger N. Together
with further resonance effects this yields rather strong var
tions of the enhancement with respect to the ion number
ion spacings aroundL'1. This can be nicely demonstrate
regarding the enhancement as a function ofN for different
fixed interion distancesL as shown in Fig. 12. The enhance
ment grows monotonically withN at smallL ~long-dashed
curve! but shows strong oscillations for mediumL ~solid and
dashed!. For largeL outside the resonance~see Fig. 11! the
enhancement rapidly decreases to valuese,1 for smallN
and than remains constant for largeN ~not shown!. This
feature is opposite to the behavior within resonance~dashed-
dotted curve! which saturates toe.1. In contrast to these
features for parallel chains, the transversal chains show
all L an increase with subsequent saturation~such as the
dotted curve!, where the final enhancement for largeN in-
creases monotonically with shrinking distancesL.

C. Embedded cubic boxes

In order to further highlight the topological dependence
correlated ion stopping, we think it instructive to add to th
above highly significant examples a third one interpolatin
between them. This explains why we consider, in Figs.
and 14, three distinct target temperature stopping cases
N58n pointlike equal charges distributed on vertices onn
successively embedded cubic boxes. The stopping conditi
with target parameters 1<kBT<10 eV, n51019 cm23,
corresponding to a classical targetQ@1, and a projectile
velocity v53v th , are typical of a realistic cluster ion-dens
plasma interaction experiment achievable with presently e
isting hardware. The given arrangement ofn51, . . . ,4

FIG. 11. Enhancemente for a parallel chain of ions with
Z51 at a velocityv510 as a function of the interion spacingL for
different ion numbersN510 ~short-dashed curve!, 50 ~long-
dashed!, 100 ~dashed-dotted!, and 200~solid!. The dotted curves
display again the enhancement for a pure linear behavior. Tar
conditions and scaling as in Fig. 10.
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56 985CORRELATED ION STOPPING IN PLASMAS
boxes is chosen so that the largest box has an edge le
equal to the target plasma screening lengthlD5v th /vp , the
first inner box haslD/2, the following onelD/4, and the last
one lD/8. So the presently considered enhanced stopp
documents the so called intermediate range effects in
above displayed classification. The sum of binary contri
tionsC2, which builds up together with the single ion sto
ping S1 the total stopping, can be decomposed into intrab
and interbox contributions,Cii

a andCi j
e , respectively,

S5NZ2S11Z2(
n

(
m5” n

C2~r nm!

5NZ2S11Z2(
i
Cii
a1Z2(

i
(
j5” i

Ci j
e , ~53!

where S1 ,C2, and rnm are defined as in Eq.~23! and
n,m51, . . . ,N with N58n and i , j51, . . . ,n. Nonlin-
ear effects can be assumed to be small under the pre
conditions and are neglected here, that is,km

c 5km . The
enhancemente5S/NZ2S1 displayed in Fig. 13 is increasin
with N but at a different pace for variousT. This behavior
with N andT agrees qualitatively with those of the Gaussi
cluster presented in Figs. 3, 5, and 6. The relative imp
ance of the interboxes and intraboxes correlations
addressed in Fig. 14 in terms of the corresponding ra
R5( i( jÞ iCi j

e /( iCii
a . This ratio also increases withN but

in an almost identical way for the three considered tempe
tures. Assuming that the binary contributionsC2(r nm)
can be replaced by a mean value^C2& we have( i( jÞ iCi j

e

5838n(n21)^C2&, ( iCii
a5837n^C2& and hence R

FIG. 12. Enhancemente for a chain of ions withZ51 and
velocity v510 as a function of the ion numberN for different fixed
interion spacingsL50.03 ~long-dashed curve!, 0.3 ~short-dashed!,
1.2 ~solid!, and 61.5~dashed-dotted! for parallel orientation. The
dotted curve exhibits transversal orientation andL50.3. Target
conditions and scaling as in Fig. 10.
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58(n21)/7. Thelatter value is very close to the observe
R with some deviation forN5438532 due to the strong
intrabox contributionC44

a of the smallest box with size
lD/8. From the foundR values we may, however, conclud
that the embedded cubic boxes behave in the considere
gime like a compact and homogeneous arrangement de
their highly ordered and specific form. The essential mess
conveyed by these cubic box results is that a three dim
sional arrangement of pointlike charges is likely to produ
enhanced and correlated stopping. Such behavior rem
obviously at variance withN-chain behavior in comparabl
conditions which can also produce negatively correla
stopping for someN values. The box arrangement in th
above intermediate range regime behaves rather simila
the Gaussian cluster. This confirms that the Gaussian m
is quite universal and useful for an averaged description
the stopping of ion debris.

IV. SUMMARY

From the examples given in the preceding section, as w
as from our own studies and published investigatio
@5–10,18,34–36# on further cluster configurations we obta
the following general picture of correlated stopping.

A. Basic features of correlated ion stopping

1. Short range correlations

The sizelc of the whole ion cluster is much smaller tha
the static screening lengthl0. More accurately, it should be
smaller than the relevant spatial resolution of the electro
that is, lc,1/km

c !l0, in particular, in the linear regime
lc,| r ~see Sec. III A 1!. This corresponds to the limit o
complete coalescence where the ion clusters behave
single pointlike ion with a charge equal to the sum of t
charges of all its constituents and the stopping is charac
ized as follows.

The energy loss of the ion cluster grows monotonica
with the numberN of its constituents, that is, with increasin
total charge at fixed cluster size. The corresponding incre
in the enhancement is linear inN within the linear regime
and less than linear;N ln(const/N) in the semilinear re-
gime. The latterN dependence is deduced from the defi
tions ~17!, ~22!, and~38!, wherekm

c 'km /N and reflects the
kind of Bloch modification discussed in Sec. II C. It mig
change when, in addition, higher order response contr
tions are included, which could shift theN dependence again
closer to a linear behavior~cf. the behavior of the charge
dependence in@31#!. In the essential nonlinear regime a b
havior ;N0.5 can be proposed out of molecular dynami
simulations@38,39# for the stopping of single ions which
scales approximatively;Q1.5 in the total chargeQ in this
regime.

The correlated stopping is independent of the exact clu
structure as long as the total charge remains unchanged

The stopping is always enhanced compared to that of
correlated individual ions.

The dependence of the enhancement on the ion-clu
velocity is moderate and mainly determined by the transit
from the linear to the semilinear into the nonlinear regim
for decreasing velocity. The related reduction of the sto
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986 56GÜNTER ZWICKNAGEL AND CLAUDE DEUTSCH
ping, thereby, corresponds to the dependence on the
charge, i.e., onN, as outlined above.

2. Long range correlations

The size of the whole ion cluster and the typical corre
tion lengthlc ~distances between the ions! is of same order
or larger than the dynamical screening lengthls'l0v. Here
every ion of the cluster acts as an individual charge wit
possible correlated behavior due to the interference of
excited long ranged wake fields. This may yield enhanced
reduced stopping for constructive or destructive interferen
respectively. The typical features of this type of correla
stopping are the following.

The dependence on the numberN of involved ions is
weak. The reduction or the enhancement of stopping du
the interferences saturates when more and more ions con
ute for a fixed interionic distancelc . In particular, the maxi-
mal stopping per ion always remains of the order of a f
times the stopping of individual ions even for a large num
of ions.

In general a reduction of stopping by destructive interf
ence occurs corresponding to a suppression of plasmon
citations with wavelengths larger than the typical distan
lc .

Enhancements of stopping by constructive interfere
are possible for velocitiesv where the ion cluster is in phas
with the excited plasma waves and the resonance cond
Rev(kc52p/lc)5kc•v is fulfilled. Because the dampin
of the plasma waves has to be sufficiently small these in
ferences can only occur for high velocities where the re
nance condition yields smallkc values for which Imv(kc)
becomes negligible.

There is a strong dependence of the correlation effects
the cluster structurekc and the ion-cluster velocityv via the
resonance condition.

In addition, a strong dependence on the target conditi
is witnessed as well. For nonideal plasma the interelec
correlation will reduce the plasmon mean-free path wh
results in a stronger damping of the plasma waves an
suppression of the interference effects@40,39#.

3. Intermediate range correlations

When the cluster sizes and correlation lengths are of
order of the screening length and hence lie in between b
previous regimes, the physics of correlated stopping is m
complicate than in both ‘‘pure’’ cases. The intermediate
gime through which transition between the above regim
takes place is mainly characterized by exhibiting simu
neous features of short range and long range correlation
gimes.

The size and topology of the cluster strongly affect t
dependence on the ion numberN. In general, there is an
increase of the enhancement withN, as for short range cor
relations.

Depending on the cluster structure reductions of stopp
due to destructive interference may occur, but there is
enhancement by constructive interference. Therefore, the
locity dependence of correlated stopping is less pronoun
than in the long range correlation regime.
tal

-

a
e
or
e,
d

to
ib-

r

-
x-
s

e

on

r-
-

n

s
n
h
a

e
th
re
-
s
-
e-

g
o
e-
ed

B. Conclusions

We have critically reviewed the dielectric formulation o
correlated stopping in the nonrelativistic regime. In partic
lar, a careful distinction has been made between a Born-R
regime with no momentum cutoff in the stopping quadratu
which advocates the standard linear regime and a quasilin
regime with short range cutoff included, corresponding to

FIG. 13. Enhancemente for N58n unit charges displayed on
vertices ofn successively embedded cubic boxes. The cubic ed
are successivelylD , lD/2, lD/4, andlD/8. The overall projectile
velocity is v53v th , the target density isn51019 cm23 and the
target temperatures areT50.93 eV ~solid curve!, 4.31 eV
~dashed!, and 7.37 eV~dotted!.

FIG. 14. RatioR of interboxes to intraboxes correlated stoppin
contributions for then successively embedded cubic boxes wi
N58n unit charges and box sizes and parameters as in Fig. 13
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56 987CORRELATED ION STOPPING IN PLASMAS
Bloch modification of the stopping power. We presented
scheme to derive the requested cutoffs for such a correc
with arbitrary given ion arrangements. We discussed the c
sequences of these nonlinear effects in this quasilinear~semi-
linear! regime on the stopping enhancement through so
selected examples. Here, the observed enhancements ac
able in the semilinear regime, which are often strongly
duced compared to the linear regime, should be consid
as lower bounds. They might increase again towards the
ear response prediction when higher order medium polar
tion effects~Barkas! are included. At this point further inves
tigations are needed to determine these contributions for
stopping of ion clusters in the semilinear coupling regime

As demonstrated, the ratios of overall cluster size a
nearest neighbor interdistance, respectively, to the pla
target screening lengthls , allow in connection with the ratio
of overall drift velocity v to the mean electron velocit
^ve& in the target to classify the expected effects connec
with correlated stopping. In the case of an ion cluster wit
Gaussian spherical distribution even a quantification of
stopping enhancement in terms of these ratios is provide
ar
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an approximation formula. In future work, this formu
might be used to perform quantitative studies of the stopp
of ion debris including the Coulomb explosion. In this co
text the outlined extension beyond the standard linear Bo
RPA regime will become important as well. Long range e
fects~with respect tols) as observed for anN chain parallel
to v are essentially ascribed to target plasmon excitation
this case destructive interferences may turn the correla
stopping negative and hence reduce stopping compare
the uncorrelated case. All together we showed how rich
diverse correlated stopping is and displayed the consider
qualitative and quantitative differences, as well as the co
mon features by ion arrangements as distinct as the Gaus
spherical distribution,N chains and embedded cubic boxe
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